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LEWER TO THE EDITOR 

The geometric phase on Kahler manifolds 

Adrian Stanley 
The Physics Labor;uory, University OF Kent at Canterbury, Crz 7NZ UK 

Received 13 September 1993 

Abstract A new expression For the phase one-Form is derived in terms of a derivative of the 
M e r  potential for thc class of projective Hilten spaces which are Kiihler manifolds. The 
technique used is thal OF imaginary time-mslation, previously intmduced by the author. 

In a previous paper [l] the author introduced the idea of translating a quantum state in 
imaginary time as a means of extracting information concerning the geometric phase 121. 
As is well known, the geometric phase is a consequence of parallel transport on a projective 
Hilbert space [3] with a non-trivial global topology [4]. The mapping from the Hilbert 
space to the projective Hilbert space may be performed in a number of ways. In [l] this 
was achieved with the aid of projection operators which have the property that they are 
invariant under multiplication of the state by a phase: 

I 4  k+ la)(al (1) 
e'BIa) H e'Bla)(olle-'O = ~a)(al. (2) 

In this letter an altemative parametrization in terms of inbomogenmus coordinates will 
be used. After a brief account of the salient features of Kiihler manifolds (of which CP. is 
an example) imaginary time translations will be. employed to give a new expression for the 
phase one-form. A few examples will then be given. 

Any non-dissipative quantum state in Hilbert space may be expressed by n + 1 complex 
numbers. However, the n + 1 homogenous coordinates, Zo. . . . , Zn do not form a good 
coordinate system on the projective-Hilbert space, CP.. In order to define a good set 
of coordinates we divide through by .Z? to obtain the inhomogeneous coordinates of the 
projective Hilbert space: 

The existence of a real (1.1) tensor field called an almost complex structure which performs 
the following mapping on the tangent space of M, JpM : TpM H TpM, 

(where wk = xk+iyk )  follows from the existence of holomorphic coordinates. Any complex 
manifold also admits a Hermitian metric defined by 

(5) 
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g p ( J p X .  J p Y )  = g p ( X  Y). 
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I fa  tensor field Q(X. Y), on a Hermitian manifold is now defined by 

Q p ( X ,  Y) = gp(JpX. Y) (6) 
then S2 is found to be antisymmetric in X and Y and represents a two-form called the 
Kihler form of the Hermitian metric. A Khler  manifold is a Hermitian manifold (M, g)  
with a closed K&ler form, i.e. dQ = 0. The main point of interest for this letter is'that the 
components of the metric may be written locally as 

where K is the Kihler potential of the m l e r  metric. A full account of Kaler  manifolds 
and complex manifolds in general may be found in chapter 8 of IS]. 

If a state vector is chosen whose parametrization over a particular coordinate patch is 
(Einstein summation convention assumed) [6]: 

then the state will be normalised to unity. The metric for such a projective Hilbert space is 
the well known Fubini-Study metric on CP': 

and the associated KZh1e.r potential of the metric is 

K In(] + 7?kWk). (10) 
If the state is time dependent, then the effect of an infinitesimal imaginruy time 

(11) 

(12) 
(13) 

translation on the K2hler potential may be observed, 

t -+ t - ie + w j  + w j  - isGI 

and 

K(t) -+ K(t, E )  = $ In(l+ $kWk - i€(lTkG' - &kWk)) 

4 h ( 1  + $kWk + 26 h(&G')). 

From the definition of wk and from the identity Gk (zk/Ze) ,  it follows that: 

" 

where the last equality holds by virtue of 



but the phase one-form is defined by 

r Im(.Z,% + .Z,Zm) 
whence it follows that 

(23) 
1 d 
2 df K ( t ,  6) = K ( t )  + - In( l+2c(r  - Im -lnZ,)) 

and therefore, over a patch where Z ,  # 0, 

d 
dt 

= r - Im - In Z,. 

Now, it is clear that the second term on the right-hand side is nothing more than 4 and that 
the phase y is given by 

The phase -$ represents a global phase and is determined by the parallel transport condition 
on the phase of the state. This is conventionally taken as 4 = 0 [7]. Therefore, over a 
coordinate patch where Z, # 0 we have 

From the above derivation it is clear that y is independent of the particular choice of Z,. 
The K&ler potential is unique up to the addition of a pluriharmonic function f (defined by 
a2f / (aw'aG) j~  = 0 ). Such a function will bk a sum of krms of the form f (w') or g ( Z j )  
and the effect of an imaginary time translation on these expressions is 

(27) a f  f ( w i )  + f (w '  - i d ' )  = f (w') - k&'- , 

a w l  

. ., df = f (w ' )  - LE-, 
df 

The first-order term in 6 gives the connection and here it is d f /dt, a total time derivative. 
There will therefore be no contribution to the phase if a pluriharmonic function is added to 
the K&ler potential. 

At this point it is worth a moment's digression to make a few remarks on imaginary 
time translation as a mechanism. In order to specify a connection on a fibre bundle, a 
horizontal subspace must be allocated to each point of the tangent space. If we make the 
following standard decomposition, 

I$) =e-"(& (29) 

(where le) is in Hilbert space (total space), e-" is the global phase (fibre) and 16) is in 
projective Hilbert space @ase space)) then the projection 
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defines the usual connection. Let uss now make a few comparisons between the derivative 
d/di(e-"I$)) and the imaginary time translated state I$(? -is)): 

(31) 
d 
-(e-;ml+)) =e-"($) - icil$)) 
dt 

whereas 

- it)) = I$) - ic&. (32) 

If we also compare projections onto the base space, namely 

(33) io d -i. - ($le z(e IQ)) = -i& + ($14) 

then the imaginary part of (33) gives the connection condition on the phase which is 
conveniently expressed either in terms of 'the imaginary derivative of (34) or the main 
result of [I]: 

ci = Im ($\IJ) (35) 

(where P+(r, E) I$(r - it))($(t - it)l). Imaginary time translation is effective in 
this case because of the close correspondence of equations (31) and ( 3 2 t t h a t  is, 
because imaginary unity is the generator of U(1) which is the holonomy group of CP". 
Inhomogeneous coordinates are good coordinates on CP" and in a coordinate representation 
the projective ket I$@)), and its imaginary time-translated colleague I$(t - ie)) may be 
written as 

The evaluation of the imaginary time-translated bracket ($(t - ic)l$(t - it)) proceeds as 
follows: 

Tr P+(t, E) = eK''*-f)(l, . . . , lzl. +it&)eK"." 
w" - isw" 

- - e-lKll.-s)+K(f.r))e2K(l.r) 
- - eK(t.e)-K<r.-f) 

whence it follows that 

(39) 
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In the following, we give some examples. Consider a particle in a spin state I j ,  j ) .  As 
it is a pure spin state, its projective Hilbert space is a CP' submanifold of CP2j and as 
such is also M l e r .  In terms of homogenous coordinates, it is given by [81 

)"*tank(0/2)eZi+ (43) 
2j! 

(2 j  - k)!k! 
Z' = cos2' (0/2)e-Ji@( 

In order to transform to inhomogeneous coordinates, we may divide by Zo as this remains 
non-zero over the whole surface of the Riemann sphere, with the exception of the south 
pole. The inhomogeneous coordinates are therefore 

)1'2tan'(0/2)eki@. 
Zj! 

(2 j  - k)!k! w k = (  

If q5 is identified with of, an imaginary time translation modifies wk,  giving 

)1'2tank(0/2)e'wte-b'. 
t 2j! 

( (2 j  - k)!k! 
This leads to a Kahler potential of 

and a phase one-form, 
K ( E )  = ln(1 + tan2(0/2)ez")j 

r = j w ( 1  -CO&). 

As a further example, consider the spin state I j, 0). This will be of the form 
X ,  (0)e-j" 

lj, 0)  = 

.. 

where the symmetry in the functions X follows from the fact that under reflections we have 
0 H x - 0.4  H n + q5. The elements of the state vector transform as 

(50) 
where - j < k < j .  This leads to a set of inhomogeneous coordinates: 

lj, m)k H lj, -m)-k 
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After the customary substitutions, 4 = wt. t + t - ie, the Kiihler potential becomes (after 
collecting terms up to O(C) only) 

To first order in E ,  

~ ( t ,  E )  = K(r,  0) + E r  (54) 

r =  j w  (55) 

y = k j  =Om od 232 (56) 
which arises from the decoupling of the 0 and @-dependencies. 

In conclusion, in [I] the process of imaginary time translation was introduced as a 
means of obtaining the geometric phase. In ,this paper the scope of this method has been 
extended by application to K a e r  manifolds but the principle remains the same in the 
equivalence of the mappings from Hilbert to projective Hilbert space and from homogeneous 
to inhomogeneous coordinates. The wider question of the reasons behind the efficacy of 
imaginary time translation as a mechanism has also been resolved 
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would also like to thank Phillip Marsh for achieving what I had considered impossible-the 
rekindling of my enthusiasm for physics. This work was supported by the Science and 
Engineering Research Council under grant no. 90807264. 
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